Background of Presenter: Andrew Gore C.Eng., M.Inst.M.&C., etc.

Chartered Engineer, Project Manager retired after 50+ years in Design, Construction, Operations & Technical Safety Engineering of Process Systems.

Experience in a variety of Industries & countries i.e. Coal Mines, Glass Manufacturing, Petro Chemical, Food, Oil & Gas Industries Worked in UK, Europe, Middle East, Bangladesh, Singapore, USA, Australia

Where did it all start?

I left school with 5 'O' Level GCEs Then served an Apprenticeship as an Electrician in the Coal Mines.

This started me off on the long convoluted path to becoming Chartered Engineer and Project Manager in completely different industries?

There are other ways to achieve this!

Start Apprentice Electrician

End (nearly) Project Manager

Jun 18 Queen Elizabeth Grammar School Penrith

Two CRP Azimuths each 3.0MW One Centre Prop 4.0MW (BFE)

³1700 m2 deck with under-deck storage and deckhouse laydown area (2400m2 + in total) 350m Dive System, 24 men, 2 x moonpools (OFE) Pathway to being a Chartered Engineer

- 1. Degree Level Technical Qualifications
- 2. Then at least 5 Years Experience at a Senior Engineer Level.

 Day Release & Evening Courses at the Local Technical College (Start 1963 finish 1972) (9 Years, 2 ONCs., 3 HNCs., Plus other Endorsement Subjects Accepted as Equivalent to <u>Honours Degree</u>)

Allowed Entry into Institute.

2. Still need a number of years experience at a Senior Engineer Level???

Jun 18 Queen Elizabeth Grammar School Penrith

Pilkington Float Glass Process

Employed as an Instrument Technician

(1968 to 1972)

Sand, Calcium
& Sodium
Carbonate
added to
Furnace.,
Heated to over
1800DegC
0

Molten GlassGlass and TinCools to aboutare both1100DegC andCooled toFlows over aaboutweir onto a600DegC. TinBath of Moltenstays MoltenTinbut Glass isnow solid.

Glass now is transported in a solid continuous Ribbon into treatment Chambers where it is Annealed and Coated as necessary.

The Moving Ribbon of Glass is Cut to length in a continuous process then transported to other finishing lines.

Over 300 Metres

First experience as an Engineer:

Responsible for the Control and Safety Systems on a Synthetic Rubber Production Plant

A Chemical Process using Butadiene a Bi-Product of Oil from local Refinery

Chemical Process Instrumentation & Control Room What a learning Curve?

Boller Operator Jeff Craigle sits in the Boller Room and monitors flows, temperatures and pressures of the bollers and feed-water system. Photo by

Jun 18 Queen Elizabeth Grammar School Pennun

High pressure

steam in

Measuring element

(Pressure sensor)

Low pressure

steam out

Controlled Condition

Controller Compares i/p signal to

set point

Controlled Control

Valve

Pneumatic Actuator

Manipulated variable

(Electric current)

device

Pressure is manipulated variable

www.shutterstock.com · 620790635

/

Equations

Flow Equation

Orifice Meter Parameters

Control Valve Equation

$Q = Cv\sqrt{\Delta P/G}$

- Q = Capacity in Gallons per Minute
- Cv = Valve Coefficient
- $\Delta P = Pressure Difference psi$
- G = Specific Gravity of Fluid

Once you have the Qualifications & Experience.

Your Skills are in Demand.

Done that now for something completely different.

Food Industry Making Sausage Casings!!!

Design & Project Engineering for all Electrical & Control Systems

Input Collagen, Cellulose, Water & HCl Factories 2 in Scotland, 1 in USA, 1 in Germany & 1 in Australia Over 200 Lines running 24Hrs/Day 7 Days/Week 50 Weeks of Year.

First Position where I was able to run Multi Discipline Projects!

Output: Sausage Casings @ 100ft/Min (30 Mtrs/Min) UK production lines approx: 200 = 20,000 ft/min (3.8 miles/min)

Now looking to use the Experience of Project Management.

Try something Different.

What next?

Late 1970s, North Sea Oil!!!

Major Companies needing all kinds of Engineers to build Offshore Facilities and Processes.

Jun 18 Queen Elizabeth Grammar School Penrith

Although there is a wide range of sizes and layouts, most production facilities have many of the same processing systems shown in this simplified overview:

•

12

Offshore Oil Platforms need a Multitude of Facilities.

Although there is a wide range of sizes and layouts, most production 1. facilities have many of the same processing systems shown in this simplified overview:

Hotel Accommodation
Catering Food 200 POB
Helicopter Landing
Supply Boat Load/Un-Load
Electrical Generation
Drinking Water
Escape Lifeboats
Satellite Communications
Drilling/Workover
Oil & Gas Process.
++ etc ++

Jun 18 Queen Elizabeth Grammar Schoo

Subsea Engineering

Accommodation for 140 Main Crane 300te offshore (OFE)

Two CRP Azimuths each 3.0MW One Centre Prop 4.0MW (BFE) Two Retractable Azimuths each 1.5MW Two Tunnel Thrusters each 1.9 MW (BFE)

1700 m2 deck with under-deck storage and deckhouse laydown area (2400m2 + in total) 350m Dive System, 24 men, 2 x moon-pools (OFE)

Benefit of having a Engineering Education

You have the:

- Qualifications & Experience
- In Demand
- Ability to Learn new skills and disciplines
- Confidence to try something different

You can move to different Industries. If you want/need to.

Worked Where?

- 1. UK: England, Scotland, Ireland
- 2. Norway: Stavanger, Sovik & Oslo
- 3. Germany: Celle & Pforzheim
- 4. France: Paris & Bezier
- 5. Holland: Velzen & Amsterdam
- 6. Italy: Rome & Ravenna
- 7. Denmark: Esbjerg
- 8. USA: New Jersey
- 9. Australia: Bathurst
- 10. Singapore:
- 11. Bangladesh: Chittagong
- 12. Saudi Arabia: Al Khobar & Abqaiq

Teamwork Design a Process System How many Different Engineers/Designers needed?

Jun 18 Queen Elizabeth Grammar School Penrith

Where will it take you???

Jun 18 Queen Elizabeth Grammar School Penrith

Questions?

Questions?

What is an Engineer?

SOUR GAS WELL PROCESS FLOW

Jun 18 Queen Elizabeth Grammar School Penrith

Skandi Achiever

Key Features

Principal Dimensions		Accommodation		Power Plant	Diving system	
Length Overall Length between pp	ength Overall 106 m 100 persons in 56 0 ength between pp 94.7 m		bins	4x Wartsila 9L20 2x MAN 9L28/32/H	Depth rating No. in Sat.	300 MSW 18
Breadth moulded	21 m	Capacities			No. of bells	1
Depth to Main Deck	8.5 m			Total generated power 12.5 MW	Bell Vol.	6 m ³
Design Draught	5.8 m	Fuel Oil	1200 m ³		System Volume	196 m ³
Max. Draught	6.6 m	Lub Oil	48.3 m ³	Forward Propulsion	Gas storage at 200 bar	18400 m ³
Deadweight at 6.6m	4000 t	Fresh water	1088 m ³		Reclaim sytem fitted to bell	
-		Ballast Water	3620 m ³	2x Tunnel Thrusters 1.5 MW ea.	Gas recovery for chambers	
Classification		Water makers	1x25t/day,1x 35t/day	1x Drop down gyro thruster 1.5 MW	Moonpool aeriation system	
DNV 1A1,E0,DYNPOS-AUTR(IMO II),Dk(+), HELIDK,ICE-C,CLEAN DESIGN,		Service Air		Aft Propulsion		
NAUT-AW (LoC), Comf V(3), DSV-SAT		1x 8 bar Compressor	1000 m3/h	2x Fixed Pitch Contaz 15 thrusters, 2.2 MW ea.		
ERN 99.99.99				Vessel Speed		
Flag Bahamas	i					
		DP 2 System		Trials speed 15 kts at 4.5m draught		
Cranes						
		Kongsberg KPOS		Helideck		
140t at 10m AHC Knuckleboom subsea crane		Beference Systems		Dimensioned and strengthened for S 02		
Tot at 32m whipline		Reference Systems		Dimensioned and strengthened for 3-92.		
5t at 10m Auxiliary seabed crane		2x HPR		Lifesaving Appliances		
3t at 15m Provision crane		2x Tautwires				
		2x MRU		2x 100 persons lifeboats		
Deck Capacity		1x Fanbeam		1x FRC		
		2x DGPS		1x 18 divers SPHL + 4 Crew		
Area Approx 73	35 m², 5 - 10t/m²	2x Seapath				
Deckload 1300t 1m above deck						